58 research outputs found

    Identification of Shocks in the Spectra from Black Holes

    Full text link
    We study the spectral properties of a low angular momentum flow as a function of the shock strength, compression ratio, accretion rate and flow geometry. In the absence of a satisfactory description of magnetic fields inside the advective disk, we consider the presence of only stochastic fields and use the ratio of the field energy to the gravitational energy density as a parameter. We not only include `conventional' synchrotron emission and Comptonization by Maxwell-Bolzmann electrons in the gas, but we also compute these effects due to power-law electrons. For strong shocks, a bump is produced due to the post-shock flow. A power-law spectral components due to the thermal and non-thermal electrons appear after this bump.Comment: 8 pages, 5 figures, Astronomy and Space Science (in press), Proceedings of the Hong Kong Conference (2004) Edited by Cheng and Romer

    A cosmological dust model with extended f(chi) gravity

    Full text link
    Introducing a fundamental constant of nature with dimensions of acceleration into the theory of gravity makes it possible to extend gravity in a very consistent manner. At the non-relativistic level a MOND-like theory with a modification in the force sector is obtained, which is the limit of a very general metric relativistic theory of gravity. Since the mass and length scales involved in the dynamics of the whole universe require small accelerations of the order of Milgrom's acceleration constant a_0, it turns out that the relativistic theory of gravity can be used to explain the expansion of the universe. In this work it is explained how to use that relativistic theory of gravity in such a way that the overall large-scale dynamics of the universe can be treated in a pure metric approach without the need to introduce dark matter and/or dark energy components.Comment: 7 pages, 1 figure. Accepted for publication in the European Physical Journal

    Infrared Magnitude-Redshift Relations for Luminous Radio Galaxies

    Get PDF
    Infrared magnitude-redshift relations for the 3CR and 6C samples of radio galaxies are presented for a wide range of plausible cosmological models, including those with non-zero cosmological constant OmegaLambda. Variations in the galaxy formation redshift, metallicity and star formation history are also considered. The results of the modelling are displayed in terms of magnitude differences between the models and no-evolution tracks, illustrating the amount of K-band evolution necessary to account for the observational data. Given a number of plausible assumptions, the results of these analyses suggest that: (i) cosmologies which predict T_0xH_0>1 (where T_0 denotes the current age of the universe) can be excluded; (ii) the star formation redshift should lie in the redshift interval 5<z<20, values towards the lower end of the range being preferred in cosmologies with larger values of T_0xH_0; (iii) the Einstein-de Sitter model provides a reasonable fit to the data; (iv) models with finite values of OmegaLambda can provide good agreement with the observations only if appropriate adjustments of other parameters such as the galaxy metallicities and star-formation histories are made. Without such modifications, even after accounting for stellar evolution, the high redshift radio galaxies are more luminous (ie. more massive) than those nearby in models with finite OmegaLambda, including the favoured model with Omega=0.3, OmegaLambda=0.7. For cosmological models with larger values of T_0xH_0, the conclusions are the same regardless of whether any adjustments are made or not. The implications of these results for cosmology and models of galaxy formation are discussed.Comment: 14 pages, LaTeX, 9 figures, accepted for publication in MNRAS. Replacement corrects some annoying typo

    Stress effects in structure formation

    Get PDF
    Residual velocity dispersion in cold dark matter induces stresses which lead to effects that are absent in the idealized dust model. A previous Newtonian analysis showed how this approach can provide a theoretical foundation for the phenomenological adhesion model. We develop a relativistic kinetic theory generalization which also incorporates the anisotropic velocity dispersion that will typically be present. In addition to density perturbations, we consider the rotational and shape distortion properties of clustering. These quantities together characterize the linear development of density inhomogeneity, and we find exact solutions for their evolution. As expected, the corrections are small and arise only in the decaying modes, but their effect is interesting. One of the modes for density perturbations decays less rapidly than the standard decaying mode. The new rotational mode generates precession of the axis of rotation. The new shape modes produce additional distortion that remains frozen in during the subsequent (linear) evolution, despite the rapid decay of the terms that caused it.Comment: significantly improved discussion of kinetic theory of CDM velocity dispersion; to appear Phys. Rev.

    Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    Full text link
    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.Comment: 15 pages, 4 figure

    What is 3C 324?

    Get PDF
    We report ground based and HST observations of the z=1.206 radio galaxy 3C 324, a prototypical example of the radio-optical ``alignment effect.'' While infrared images shows a simple, round object reminiscent of a giant elliptical galaxy, the HST images reveal a spectacular, linear chain of UV-bright subcomponents closely aligned with the radio axis. In light of the available data, we consider various scenarios to explain the properties of 3C 324, as well as evidence for the presence of dust which may obscure the central active nucleus and scatter its light to produce the polarized, aligned continuum seen in the rest-frame UV.Comment: 9 pages, uuencoded gzipped postscript. To appear in ``Galaxies in the Young Universe,'' ed. H. Hippelein, Springer Verlag. Revised version (hopefully) corrects postscript error which garbled the last pag

    Pulsars as the Sources of High Energy Cosmic Ray Positrons

    Get PDF
    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons.Comment: 10 pages, 5 figures; updated to include published Pamela results; version to appear in JCA

    Dark matter and Colliders searches in the MSSM

    Full text link
    We study the complementarity between dark matter experiments (direct detection and indirect detections) and accelerator facilities (the CERN LHC and a s=1\sqrt{s}= 1 TeV e+ee^+e^- Linear Collider) in the framework of the constrained Minimal Supersymmetric Standard Model (MSSM). We show how non--universality in the scalar and gaugino sectors can affect the experimental prospects to discover the supersymmetric particles. The future experiments will cover a large part of the parameter space of the MSSM favored by WMAP constraint on the relic density, but there still exist some regions beyond reach for some extreme (fine tuned) values of the supersymmetric parameters. Whereas the Focus Point region characterized by heavy scalars will be easily probed by experiments searching for dark matter, the regions with heavy gauginos and light sfermions will be accessible more easily by collider experiments. More informations on both supersymmetry and astrophysics parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    Time-Dependent Models for a decade of SN 1993J

    Full text link
    A classical and a relativistic law of motion for a supernova remnant (SNR) are deduced assuming an inverse power law behavior for the density of the interstellar medium and applying the thin layer approximation. A third equation of motion is found in the framework of relativistic hydrodynamics with pressure, applying momentum conservation. These new formulas are calibrated against a decade of observations of \snr. The existing knowledge of the diffusive processes of ultrarelativistic electrons is reviewed in order to explain the behavior of the `U' shaped profile of intensity versus distance from the center of SN 1993J.Comment: 20 pages 19 figures, Accepted for pubblication in Astrophysics and Space Science 201
    corecore